Products of subgroups

Def: Let $H$ and $K$ be subgroups of $G$. Define

$$
H K=\{h k \mid h \in H, k \in K\}
$$

Note that $H \subseteq H K$ and $K \subseteq H K$, but $H K$ is not necessarily a subgroup of $G-$ e.g. $\langle(12)\rangle\langle(23)\rangle=\{1,(12),(23),(123)\}$, which has order 4 and is thus not a subgroup of $S_{3}$.

If $G$ is abelian, then $(h k)\left(h^{\prime} k^{\prime}\right)^{-1}=\left(h h^{\prime-1}\right)\left(k k^{\prime-1}\right) \in H k$, so $H K \leq G$. In fact, it is a subgroup in a move general setting:

The: $H K \leq G \Leftrightarrow H K=K H$.

Pf: If $H K \leq G$, then $\forall h \in H, k \in K$, we know $h \cdot l=h \in H K$ and $1 \cdot k=k \in H K$, so $k h \in H K$. Thus $K H \subseteq H K$.

For the reverse containment, if $h k \in H K$, then $(h k)^{-1} \in H k$, so $(h k)^{-1}=h_{1} k_{1}$, some $h_{1} \in H, k_{1} \in K$

Thus $h k=\left(h_{1} k_{1}\right)^{-1}=k_{1}^{-1} h_{1}^{-1} \in K H$. so $H K=K H$.

For the converse, assume $H K=K H$.

Let $a, b \in H K$. We want to show $a b^{-1} \in H K$
Let $\begin{array}{r}a=h_{1} k_{1}, b=h_{2} k_{2} \text {. Then } \begin{array}{r}a b^{-1}=h_{1} \underbrace{K^{\prime}}_{K^{1} k_{0}^{n} k_{2}^{-1} h_{2}^{-1}}=h_{1} h_{3} k_{3}\end{array} \in H K . \\ \Rightarrow H K \leqslant G .\end{array}$
(Note that $H K=K H$ does not mean elements of $H$ commute $w /$ elements of $K$. It just means we can write hi as $h k=k^{\prime} h^{\prime}$, for some $k^{\prime} \in k, h^{\prime} \in H$.)

Cor: If $K \unlhd G$, then $H K \leq G$ for any $H \leq G$.

Pf: Assume $K \unlhd G . \quad H K=\bigcup_{h \in H} h K \underset{\jmath_{\text {normality! }}}{\substack{h \in H}} \underset{ }{ } K h=K H . \Rightarrow H K \leq G$.

If $G$ is finite, how many elements does $H K$ have?

HK is the union of cosets, but some of those coset may be equal.

$$
\begin{aligned}
h_{1} k=h_{2} K & \Leftrightarrow h_{1}=h_{2} k \text {, some } k \in K \\
& \Leftrightarrow h_{2}^{-1} h_{1} \in K . \\
& \Leftrightarrow h_{2}^{-1} h_{1} \in H \cap K \Leftrightarrow h_{1}(H \cap K)=h_{2}(H \cap K) .
\end{aligned}
$$

So the number of distinct coset in the union is $\frac{|H|}{|H \cap K|}$ by Lagrange's theorem. Since each coset
has $|K|$ elements,

$$
|H K|=\frac{|H||K|}{|H \cap K|} \text {. }
$$

